Thursday, January 30, 2020

Romeo and Juliet Essay Example for Free

Romeo and Juliet Essay Romeo and Juliet has always been known as one of Shakespeares most popular and tragic love story plays. It is known for its dramatic ending love scene and tale of twisted fate. This essay is based upon the pathos of the last scene of Romeo and Juliet. Pathos is a quality that arouses emotions such as pity, sympathy or despair. This is therefore why the essay is based upon the last scene as it is the most tragic and dramatic scene in the play which successfully arouses sympathy in the reader due to the tragic atmosphere created by Shakespeare. The atmosphere is created in Act 5 by Shakespeares gift of writing that effectively arouses emotions and passions in the reader. For example, Romeos death was unnecessary as Juliet was merely sleeping which Romeo was unaware of. Shakespeare increases the feeling of pathos in the audience by the dramatic use of irony as the audience know that Juliet is alive therefore there is an alternative ending possible however Romeo is convinced of her death and with a broken heart takes his own life leaving the audience feeling a sense of despair at this unnecessary tragedy. Another example of dramatic irony is shown in the quote: thou art not conquerd beautys ensign yet Is crimson in thy lips and in thy cheeks, And deaths pale flag is not advanced there.. Here Romeo is distraught that she is dead and is saying shes looking beautiful, how can she be dead. Of course she isnt dead, merely sleeping, and the audience painfully know this. This then increases the feeling of pathos with the use of dramatic irony. O my love, my wife, Death, that hath suckd the honey of thy breath.. the language used in this section is beautiful and very dramatic, the deep, in depth language has a great affect on the atmosphere, and the feeling and emotions in the audience. Written plays, unlike most novels perhaps, are composed in the present tense which engages the reader as they know directly what is going on in the characters head, rather than being presented historically in the past tense, which has a less dramatic effect on the reader. It is more gripping when written in the present tense as the story unfolds directly before the reader. Heres to my love! (drinks) oh true apothecary ! thy drugs are quick then thus with a kiss I die this quote from Act 5, Scene 3 is when Romeo drinks the poison and is an example of Shakespeares dramatic language. The pathos and atmosphere builds up as Juliet awakes I do remember well where I should be; and where is my Romeo? as she rises to find Romeos body. This scene is very tragic as fate has struck in such a terrible way. This is mostly due to the heavy, strong tragic language used, it has a dramatic affect on the scene. O churl, drunk all, and left no friendly drop To help me after? I will kiss thy lips.. as you can notice from the quote, the language used is so deep and poetic, especially at this dramatic stage in the play. It is so affective as the audience sympathise with the characters, because the language succeeds in involving them with the plot. The build up to the ending scene has a great affect on the pathos, as the letter does not get to Romeo, and there is a worried, anxious atmosphere in the audience- as nobody knows what shall become of Romeo, and if Friar Lawrence will get to Romeo in time to tell him. There is a great build up which grows through the play, and by the ending scene there is a great anxious atmosphere, which has gradually built up through the play. The above scene and setting (in a tomb) creates a sombre mood and makes the reader empathise with the language more effectively (again increasing the whole pathos and feeling to the scene). The scene is taking place in a gloomy tomb with sleeping bodies, including Juliet who is looking peaceful in her sleep, the setting is therefore dark and gloomy and even more tragic. Shakespeare has therefore created a very tragic and saddening mood by choosing that setting for the most dramatic scene. I am almost afraid to stand alone Here in the churchyard, yet I will adventure. The setting is therefore creating an atmosphere as well as the language-which arouses peoples emotions even more and helps contribute to the pathos. To conclude, what contributes towards the pathos of Shakespeares play is the atmosphere he creates through language, characters, scene, setting and ironic situations through his clever development of the storyline, the other characters also contribute, as it seems as though they are all against Romeo and Juliet- apart from Friar Lawrence and Juliets nurse. Friar Lawrences good intentions precipitate the tragedy- although it wasnt his fault and he was only trying to help the difficult situation. As for Old Capulet and Lady Capulet who do make the situation worse-and could in fact be blamed for the tragedy, this is something the audience think about after the play, which characters could be blamed for the tragedy, this therefore does affect the pathos in a great way. The language, setting, characters and build up all come together at the end to create a great atmosphere and pathos.

Wednesday, January 22, 2020

How to Achieve the American Dream :: Creative Writing Narrative Papers

How to Achieve the American Dream Right now, most of you reading this are twenty somethings with extremely bright futures ahead of you. Many of you were the stars of your high school, if not area, if not state, if not country. Then you got here and things changed. All of a sudden, everything was challenging. From the first moment you got here you were in competition with all the other freshmen for spots in a fraternity, sorority, independent living group, or dorm. You compared SAT scores, compared achievements, and found that they, like you, were amazingly accomplished. Many were National Merit Scholars, AP Scholars, Governor’s School participants, Math Olympiad winners, Science Fair winners, and Scholarship recipients. MIT is the premier science and engineering school in the country if not the world. Within it’s walls, minds have been coached and trained to excel in such diverse areas as film, computer science, electrical engineering, mechanical engineering, math, physics, economics, management, chemistry, architecture, and aero-space engineering. In Hollywood we are portrayed as the end all be all. In the movie Independence Day the scientist who discovers the secrets of the aliens is an MIT Ph.D. Also an MIT PhD in Physics is portrayed as a scientist in the movie Armageddon. People travel from all parts of the world to walk through our hallways and to hear MIT professors give lectures and to watch students cross at 77 Massachusetts Avenue. So you start school and soon find that the work that is assigned for the most part is busy work. Going to bed at four or five am start to seem like reasonable bedtime hours. In addition to this, you can actually count how many hours you have slept in the last three days on your hands. Suddenly, you don’t see yourself as being lucky for being so privileged as to be attending MIT. Complaining about how much work you have, how little you slept last night, and how much this place â€Å"sucks† seems to pepper all the conversations that you have during the day. Not only that, but the administration knows what it does to students so they have three-day and four-day weekends to let the students let off a little steam. The administration calls these weekends â€Å"long weekends†, whereas the students call them as â€Å"Suicide Weekends† – They are held so that students don’t become over-stressed and commit suicide.

Tuesday, January 14, 2020

Communication Skill Essay

International Conference Conferences, Symposia and Campus Events 2006 The Integration of Professional Communication Skills into Engineering Education Dorthy Missingham University of Adelaide Originally published in the Proceedings of the EDU-COM 2006 International Conference. Engagement and Empowerment: New Opportunities for Growth in Higher Education, Edith Cowan University, Perth Western Australia, 22-24 November 2006. This Conference Proceeding is posted at Research Online. http://ro. ecu. edu. au/ceducom/91 Missingham, D. The Universtiy of Adelaide, Australia. The Integration of Professional Communication Skills into Engineering Education Dr Dorthy Missingham School of Mechanical Engineering The University of Adelaide. Australia dorothy. missingham@adelaide. edu. au ABSTRACT Conventional Engineering curriculum is strongly focused on the development in students of technical knowledge and skills. However, in recent years, employers have increasingly acknowledged that this traditional preparation of Engineering students‘ is inadequate, as graduates lack the wide range of written and spoken communication skills required to engage with members of other professional groups and with the broader community. Recognition of the important role that communicative competence plays in professional success within the engineering industry has, as a result, led to a number of tertiary institutions developing curricula to address these needs. This paper presents a successful integrative Engineering Communication curriculum, developed for both local and international Engineering students in an Australian university, which aims to develop both communicative ability and community engagement. The courses that form the Engineering Communication Program provide for critical awareness-raising of community issues such as ethics, sustainability and gender, English for academic and professional Engineering purposes for both English as an Additional Language (EAL) and English background students and advanced research communication for postgraduate students. All courses are strongly informed by scaffolded learning techniques, systemic functional linguistics and genre theory, and most are run collaboratively by Engineering, Education and Applied Linguistics lecturers. The aims of the Program are to raise awareness in Engineering students about, and to equip them with skills for, their future roles and responsibilities, and to provide the community with engineers whose strong technical knowledge is balanced by an appreciation of the broader social contexts with which they will engage in their professional lives. INTRODUCTION The need for engineering students to acquire professional skills, in addition to technical skills, in order to enhance both community engagement and career success has been increasingly articulated by educators and industry professionals alike. Professional skills mentioned variously include teamwork, conflict resolution, and an awareness of social justice, sustainability and ethics. However, as highlighted by Adams and Missingham (2006) the need for improved communicative competence in engineering graduates has been the professional skills area most widely discussed in research and the engineering profession. Increasingly, engineers work in knowledge-intensive fields that require both high level communication and problem-solving skills (Alvesson 2004). In the Australian setting this need is recognised in the National Generic Competence Standards formulated by Engineers Australia, which extensively refers to communicative abilities throughout its descriptors of competencies required by engineers (IE Aust 1999). However, research on employer satisfaction with engineering graduates‘ communication skills indicates they are below desired requirements, both in Australia (DEETYA 2000) and abroad (Lee 2003). This paper discusses a successful integrative Engineering Communication curriculum, developed for both local and international Engineering students in The University of Adelaide, which aims to develop both communicative ability, and an understanding of the need and ability for community engagement. The paper begins with a brief comparative examination of engineering communication education in other universities, both in Australia and overseas. 346 COMPARATIVE APPROACHES The critical role that communicative competence plays in both academic and professional success has, over the past decade, been recognised nationally and internationally in a number of tertiary institutions involved in engineering education (Najar 2001, Riemer 2002, Einstein 2002). A review of literature, relating to engineering communication education, reveals several significant trends common both within Australia and overseas. These trends identify three major areas of academic and professional engineering communication recognised by educators as important skills needed by graduating engineers. The teaching of oral communication, written communication and teamwork skills have been introduced as part of the undergraduate engineering curricula in various Universities world wide (Einstein 2002, Schowm & Hirsch 1999). Whilst the combination of communication skills taught and the methodologies used may vary between institutions one particular theme or approach frequently emerges. An interdisciplinary approach to the teaching and learning of engineering communication (Artemeva, Logie &St-Martin 1999, Jennings & Ferguson 1995) is being practiced by a small but increasing number of engineering faculties and colleges. Examination of interdisciplinary approaches is important in relation to the integrative approach used by engineering and communication educators within the School of Mechanical Engineering at the University of Adelaide. In this respect, learning and teaching of oral and written communication skills in engineering communication curricula have been examined whereas team work skills have not been specifically examined for this particular discussion, as it is considered as worthy of separate dedicated research . Studies undertaken within Australian universities attest the need for high level communication skills. According to Najar (2001) communicative competence, including teamwork and professional writing skills for example, the ability to ? research, write and format basic research reports‘ as well as developing formal oral presentation skills is important to prepare students for both ?academic success and the workplace‘. Similarly Riemer (2002) claims that whilst engineering knowledge and technical expertise are important attributes the graduate engineer must be able to present this knowledge ? ith an excellent standard of communication skills‘. However, where Najar emphasises written and teamwork communication skills, Riemer (2002) claims that emphasis on oral communication skills is highly valued by employers. Riemer further elabourates that oral communication and presentation skills are ? career enhancers‘ which may be considered as ? the biggest single factor in determining a student‘s career success or failure‘ (Beder 2000 cited in Riemer 2002). Despite the apparent emphasis that Riemer places on oral communication skills he also acknowledges that there are a number of areas of communication skills which are necessary for engineers, including written communication skills, technical terminology and professional jargon. The later two areas are probably best described in linguistic terms such as genre and discourse, which are indicative that for each specific discipline there is an accompanying language culture. Internationally, universities are also engaged in the teaching and learning of engineering communication skills. Einstein in his 2002 overview of changes in engineering education at the Massachusetts Institute of Technology (MIT) describes a new approach implemented in the School of Civil Engineering which was developed in response to the view that what was being taught in universities was increasingly divorced from practice. As a result twelve courses were either created or developed in most of which ? regular oral, written and illustrated presentations‘ were required. Similarly Carlton University in Canada also recognised that the engineering discipline had specific needs in the teaching and learning of communication skills (Artemeva et al 1999). These needs related directly to the transition of engineering students from an ? academic to a workplace environment‘. In the case of Carlton University engineering communication studies emphasise written communication skills. The Carlton University approach described by Artemeva et al (1999) is in contrast to Riemers (2002) theoretical proposition on the prominence required in developing oral communication skills for the workplace. One other key difference in Riemers (2002) paper to the approaches suggested by Artemeva et al (1999) as well as Najar (2001) and Einstein (2002), is that Artemeva et al, Najar and Einstein are all overviewing programs of engineering communication already in existence. A common theme emergent in the literature is that many institutions recommend an interdisciplinary approach to the teaching and learning of engineering communication. Various researchers and educators claim that linking acquisition of academic communication skills to authentic engineering tasks 347 both challenges students negative attitudes, towards what they term ? earning English‘, as well as promotes student motivation. Shwom and Hirsch (1999) claim that shared agenda between disciplines recognises the equal status of engineering and communication, or the ? equal place at centre stage of the course‘. This view is also reinforced by Jennnings and Ferguson in their 2002 study, of communication engineering skills in Queen‘s University, Belfast, which states that through linking the study of communication skills to the exploration of engineering issues that communication skills become a key element in the educational process. Furthermore, ? here is a greater likelihood that students will develop a better overall perspective on their (engineering) subject‘. Significantly, many courses which have implemented an interdisciplinary approach have combined the teaching of communication skills with engineering design subjects. In an approach similar to that of the School of Mechanical Engineering, at The University of Adelaide, engineering schools at Northwestern University, USA, Massachusetts Institute of Technology, Harvard and Flinders University, South Australia advocate an interdisciplinary approach that combines engineering communication with engineering design. In reference to the program at Northwestern University, Shwom & Hirsch (1999), claim that design and communication are ? ideal partners‘ and that students ? combined knowledge of both fields will make them both better designers and better communicators‘. Additionally students are convinced of the importance of communication in engineering. Of the interdisciplinary approach taken at MIT, Einstein (2002) describes design as a synthesising process which requires various visual, written and problem solving skills inferring therefore that it is the natural setting for teaching and learning communication skills. He goes on to state that ? design (synthesis), coordination and communication‘ are regarded as the major features of the MIT , Civil and Environmental approach to engineering education. Najar (2001) discusses the Language in Use (LIU) modules linked directly to engineering design project work at Flinders University. A notable similarity with the approach of Adelaide University‘s School of Mechanical Engineering approach is that the development of students engineering knowledge is supported in an integrated way by the acquisition of professional and academic communication skills. Skills common to both universities include; how to communicate orally, how to research, and how to write and format research reports. Similarly the interdisciplinary approach employed in the Civil Engineering Department at Queens University, Belfast covers related communication issues in use of the library (how to research), English composition and technical report writing (written communication) and Public speaking (oral communication). Additionally Queens University covers poster presentation (visual communication) an area that the Adelaide University program covers in fourth year but which is not mentioned in the Flinders University program. It is apparent from the literature therefore, that the need for communicative competence in engineering education has been recognised in a number of places worldwide. In particular, an interdisciplinary education approach in engineering communication has been introduced in a range of Universities which offer engineering studies. Despite some differences in the methodologies, curricula and elements of communication addressed by different universities, including the University of Adelaide, these studies indicate that the synthesis of engineering design, which is inherently practical in nature, with the need to communicate the design process and outcomes is both an ideal setting and an important factor for positively influencing student motivation and skills in the study of professional communication. By promoting a shared agenda between disciplines the literature also suggests that this may also promote student recognition of the importance of communication in engineering. Regardless of the similarities and differences of engineering communication education taken by the programs discussed here the literature agrees that increased levels of communicative competence relate directly to employability and success in the engineering industry. THE ADELAIDE APPROACH Background The teaching of professional communication skills within the School of Mechanical Engineering at the University of Adelaide has evolved over a number of years since the mid 1990s. This evolution has experienced different iterations with the current approach developing more directly from a combination of initiatives taken both within the Faculty of Engineering and the School of Mechanical Engineering, and by the then Advisory Centre for University Education (ACUE), now the Centre for Learning and 348 Professional Development (CLPD). These initiatives led to the creation of various courses in Engineering Communication including courses for International Students. The Faculty wide Engineering Communication (EAL) course was traditionally managed by the School of Mechanical Engineering. In Semester 2, 2006 this course was transferred to management by the Faculty Academic Registrar in order to reflect the Faculty wide nature of the need for dedicated engineering communication course for international undergraduates. Within the School other initiatives led to the teaching of Engineering Communication to 3rd year students. Initially taught as a separate subject this course was combined with the Level III Design in 2004. In the same year the School of Mechanical Engineering also created a new course, Engineering Planning Design and Communication (EPD&C), for entry level students. The Mechanical Engineering Communication approach consists of a fully integrated, nested curriculum of courses, designed to; explicitly link communication learning to learning in engineering at all year levels, ? develop students‘ ability to construct and present logical argument discursively, ? oster language development from sentence level skills to large document written and oral communication, ? encourage active participation through class discussion and response to formative feedback, ? foster the ability to communicate problem identification, formulation and solution to diverse audiences and ? use development in communicative ability as a vehicle for fostering students‘ insight into and perspective on engineer ing practice in the community, including the social, cultural, political, international and environmental context of professional engineering practice. Each course in the program, illustrated below in Figure 1, addresses these aims while embedded within either broader Engineering course curricula or, in the case of Engineering Communication EAL, within a curriculum that employs specific strategies that address the needs of EAL Engineering students (Adams & Missingham 2006). 349 EPD&C Level I 2 Engineer Communication EAL 1 Design Practice Level I I 2 Engineering and the Environment Level III 2 Design & Commun. Level III 2 Research Communication Program 1 Design Project Level IV 2 (Postgraduate) Figure 1: Mechanical Engineering Communication courses showing their relationships to each other and the broader Engineering curriculum. 1 for students enrolled in all Engineering disciplines 2 for students enrolled in Mechanical Engineering Theory The theoretical underpinning of the first year Engineering Planning Design and Communication course and the third year Design and Communication course is based on the notion of ? ocial constuctivism‘ as advanced by Vygotsky. In particular, Bruners‘ concept of ? scaffolded‘ learning (Wood, Bruner & Rose 1975) informs the student based approach that is centred on active participatory curricula which aims at assisting students to develop increasingly skilled levels of academic and professional communication. Social constructivism grew from a view that educational methods needed to be base concepts of learning beyond rote memorisation, ? egurgitationâ⠂¬Ëœ of facts and the division of knowledge into different subjects. Early approaches sought to provide appropriate learning situations where teachers allowed students to develop their own knowledge, meaning and truth in a context which would enable them to use the learning throughout their life. Vygotsky developed this philosophy, noting that ? the central fact about our psychology is the fact of mediation‘ (Vygotsky 1978 p. 166). Social constructivists consider that the dynamic interaction between instructors, learners and tasks provides the opportunity for learners to create their own understanding through the interaction with others and is the most optimal learning environment. The constructivist approach, guiding the Mechanical Engineering communication courses is further reinforced in the application of Brunerian notions of the ? spiral curriculum‘. Bruner postulated that ? A curriculum as it develops should revisit the basic ideas repeatedly, building on them until the student has grasped the full formal apparatus that goes with them‘ (Bruner 1960) p. 3). 350 In the School of Mechanical Engineering these theories guide the designing of courses which are aimed at developing generic language skills which can be used as the basis for current and future application within the engineering industry, rather than a language course focussed solely on communicating engineering terms. The learning and t eaching of communication skills across all levels of the undergraduate program enables scaffolding of knowledge to be integrated rather than focussing on a short d of student teacher interaction. Through this approach skills acquired in first year communication are reinforced in second year Design Practice, extended and elaborated on in the level III course and then reinforced again through workshops and practice in the fourth year Design Project. Borrowing from neuroscience research into learning. the 2006 Level III and semester 2 EAL students have informed the idea of a concept of developing an habitual intellectual framework. Whilst relying on heavily on scaffolded learning, this concept also aims to redress some of the negative perceptions that engineering student have about ? earning English‘ by encouraging students to acquire higher cognition learning in communication skills which they can then apply as habit. PRACTICE AND PERCEPTION Three dedicated communication courses are provided at undergraduate level, Engineering Communication EAL (English as an Additional Language), Engineering Design Planning and Communication (Level I) and Design and Communication (Level III). The overall aim of the three courses is to provide students with an nderstanding of the importance of communication to the professional engineer and to equip them with the necessary knowledge, skills, flexibility and confidence to be good engineering communicators. Through the application of Student Experience of Teaching and Learning (SELT) surveys students are able to comment on and assess the effectiveness of the courses to their needs. At the same time instructors are able to monitor student needs and make appropriate changes to the curriculum and methodology if required. Engineering Communication EAL Engineering Communication EAL was designed specifically to meet the particular needs of international students and to be complementary to the technical engineering courses students undertake to complete their degrees. Through a variety of formal and informal learning strategies students are introduced to and practice basic research techniques. These techniques include ? locating, critically reading and interpreting academically acceptable sources ? presenting their analysis in the form of evidenced based propositions with sources integrated appropriately ? resenting the argument in both a written and an oral form suitable for an academic audience. The strategies used emphasise participation and practice as key elements to becoming effective communicators. Therefore, classes are very active, sometimes rowdy and frequently fun with group discussions and impromptu presentations of issues, group and individual exercises integrated with peer teaching/learning through guided presentation of answers to the class, and open class discussion inviting students to academically critique their own and others responses. Student Experience of Teaching and Learning (SELT) surveys consistently indicate that learning outcomes for students are enhanced by ? full participation on (sic) the aims of the course‘, ? giving feedback to students about their participation‘, adjusting the teaching ? of various topics accordingly (sic) to the class – enabling faster, more effective learning‘, ? very dynamic lessons‘ and being ? able to stimulate my learning‘. Formal assessment strategies involve a series of formative assessments which involve students applying feedback provided to a subsequent assignment. Student comments indicate that this approach is highly effective. Design and Communication courses The Engineering Design Planning and Communication (Level I) and Design and Communication (Level III) courses are provided for all students undertaking degree programs in the School of Mechanical Engineering. The integration of communication and engineering design was devised specifically to emphasise the importance of professional engineering communication and to ensure that communication is not seen by students as a stand alone subject that can be completed and then forgotten about. The effectiveness of this approach in highlighting the importance of communication has been recognised by students who report that the course(s) ? improves your speaking and writing skills‘, 351 ?helps with the written work in other subjects‘, they have ? learnt how to write for university assignments‘, and ? learning academic writing (is) useful to further years of study‘. A number of students have explicitly stated that the course taught them ? to communicate effectively and should be compulsory for all engineer‘?. These comments are also consistent with graduate attributes specified as important not only by the Faculty but also by the engineering industry, including ? the ? ability to communicate effectively‘, ? the ? ability to undertake problem identification, formulation and solution‘ ? the acquisition of skills to enable the ? pursuit of life long learning‘. Course material is also designed to be complementary to the Engineering Communication EAL course by providing reinforcement of and extension to the skills learnt. For example, the Level I course provides students with the additional educational framework and the opportunity to apply skills learnt in ESL to the needs of report writing and the oral presentation of progress reports on a Planning and Design project. Student feedback through SELT surveys consistently evidence the importance of these skills, for example, ? It was great knowing how to structure a report properly‘ and the ? introduction to engineering report writing is very comprehensive‘. A further integrative approach that has been taken in the Level I and Level III courses is reflected in the establishment of the relationships with prior learning and future learning. For example, Level III examines structure, cohesion, critical thinking and analysis, the use of evidence, presenting arguments both in written and oral form and report writing at a more advanced level than the Level I course. The Level III communication course is also an important prerequisite to level the IV Design Project, where all students must write an extensive design report and present a professional seminar on their project. Challenges and Outcomes Empirical and anecdotal evidence indicates that engineers are poor communicators and that one of the factors which influences student choice in undertaking engineering studies is the belief they will not need ? English?. Therefore, discussions and exercises are designed to encourage students to participate and practice skills, to be flexible in their approach to language and its uses, to contribute their ideas, to build on their strengths and to develop confidence. The value placed on practical evidencing of communication is reflected in a participation mark, worth 20% of the total assessment. As a result classes are noisy and dynamic. Students also find that effective communication can be both useful and enjoyable. For example, SELT comments show ? I like the idea of students presenting ideas on overheads (transparencies) in class activities‘, the course ? keeps people interested in tasks that could be very boring‘, ? A good environment for learning is provided‘ and ? interactivity of the class in tasks helps us to gain a better understanding of the subject‘. Similar strategies of regular class and group discussions as well as workshop exercises are used throughout the courses to ensure students regularly practice the skills of communication. Student response indicates that group learning and discussion ? stimulates learning without placing student under pressure‘ and that all students‘are able to learn something regardless of language ability‘. Individual students and groups are invited to present analyses and answers to the whole class and then to call for comments from their peers. The importance to student learning of this approach is exemplified in the following SELT comment ? Doing exercises and presentations in class forced me to do the work which I otherwise would not have touched if it had been set as homework. I appreciate that. Students are encouraged to form cross cultural groups during classes, so that a greater understanding of diversity and its value in engineering is promoted. At the same time students must undertake practical work in developing effective team work skills in order to be able to complete tasks and class based exercises. Students frequently comment that the group work is th e best aspect of the course as it provides opportunity to improve interpersonal communication skills and to gain a real sense of diversity through their interaction with students of different socio-cultural, and ethnic backgrounds. Student comments indicate that working in cross cultural groups encourages ? acceptance of all ideas‘. Students discuss and at times challenge the characteristics of English for academic and professional purposes as presented in these courses. In doing so, students become increasingly aware of how purpose and socio-cultural factors shape the kind of language used in different contexts rather than 352 viewing language as simply correct or incorrect, or based predominantly on the rules of grammar. Issues of ethics and social responsibility arise naturally in relation to topics and lecturers encourage students to discuss these in class. Similarly communication and management themes highlight the nontechnical role aspects of engineering. Students have reflected that ? This (allows you to) practice skills you actually need‘ and there is a ? good balance for a broad variety of skills‘ development. Links to industry expectations are also reinforced through guest presentations from graduate engineers, Engineers Australia and industry leaders. In these way students are encouraged to broaden their perception of the engineering industry as a technical culture to include the understanding that engineering is also a communicative culture. Formal Assessment of Student Work A series of formal assessments, both oral and written are also undertaken to ensure that students can also apply research and analytical skills in a ? planned and timely manner‘ as highlighted by engineering graduate attributes. Formative feedback is given on all assignments in order that students may take full advantage of self directed learning. Students who apply the feedback to subsequent assignments are rewarded for both the attempt and the quality of the improvements made. Students report that this approach provides ? constructive criticism‘ which ? helps each student‘ to ? check their drafts carefully‘. Assessment criteria and their relationship to graduate attributes are fully discussed in both the course notes and in conjunction with exercises, and students have expressed this helps them to place learning in the context of professional and industry expectations, ? hen it‘s explained, it makes sense that engineers spend so much time writing reports, talking to clients and presenting project ideas to meetings‘. RESEARCH TOPICS AND TOPICAL RESEARCH To broaden student awareness of their professional responsibilities as engineers within society, in addition to operating within a company framework, research topics are carefully chosen to reflect community and industry concerns. In particular th e topics chosen provide for critical awareness-raising of community issues such as ethics, sustainability and social justice. For example, the research topic for the current semesters Engineering Communication EAL course is the Role of Engineers, through which students are exploring issues such as personal and interpersonal skills, engineering education and life long learning, ethical responsibilities, social and environmental factors, holistic thinking, entrepreneurship as well as technical skills. Previous topics have included an examination of gender issues in engineering education and the profession, forensic engineering, and the effects of teamwork on the outcomes of engineering projects. The imbedded nature of the Engineering Communications courses within the engineering curriculum ensures that the research topics are relevant to engineering practice, topical and frequently devised in collaboration with engineering lecturers. Level III Design and Communication research topics, for example, are devised together with the design lecturer and sometimes also with reference to other departmental members. The current semesters‘ research topic was directly linked to the Design Project topics. These topics and the communication research topic specifically designed to be co-related. Through this collaborative approach aspect of sustainability in engineering practice are reinforced and student skills in critical thinking, analysis and evaluation of research information are further developed. In Design the projects are to design a Formula SAE Car, Bio-Oil Trike, Biodiesel Bike, 1. 0 litre Biodiesel Taxi – Tuk-Tuk, Hybrid Solar Electric Vehicle, Biodiesel Boat, Formula SAE Aircraft, Alternative Energy 2-Seater Aircraft, Hybrid Solar/Biofuel Generator, Fossil-Fuel-Free irrigation system or a Nano-satellite. The topic for the Communication assignments is ? ustainability‘, applied to the chosen design project. , as outlined below. Topic The broad objective of sustainable development is ? to achieve social justice, sustainable economies, and environmental sustainability? ( European Conference on Sustainable Cities & Towns, 1994). Australia has a National Strategy for Ecologically Sustainable Development which aims to ? meet the needs of Australians today, while conserving our ecosystems for the benefit of future generations? (Office of Sustainability, Department of Environment and Heritage, 2006). 53 Task Environmental sustainability is a fundamental aspect of sustainability. For your Communication assignments you should identify how environmentally sustainable features can be incorporated in the design of your project, for example a bio-diesel boat, or alternative energy 2-seater aircraft. In addition, you should compare the effects of these features to a traditionally designed version of your project. You are not expected to justify sustainability. Your research must focus on the specific features of sustainable transport. Yong & Missingham, 2006) Previous research topics have included the following: Investigate an ethical dilemma in an engineering project, and critically evaluate the response of the engineering company or companies involved, in terms of relevant tenets of the IEAust Code of Ethics. (Yong & Missingham, 2005) Select an example of technological development that is prominent in industrialised society and analyse the benefits as well as the adverse effects of this technology to individuals, society and the environment. Yong & Missingham, 2004) A high level of both professional communication skills and an appreciation of community concerns required to be developed by the Level III Mechanical Engineering students. The topic descriptions have also been carefully devised to illustrate to students the inter-relationship of effective communication and an understanding of the social, cultural, political, international and environmental impacts implicit in the professional practice of engineering. These expectations are detailed in the Research Topic paper given below. ?Your research is to be based on a topic which has social, cultural, economic, and/or political implications. Engineers work in every sphere of life. As a professional engineer you will be working in an array of industries, in various contexts, and making contact with many people about professional organisations, government departments and agencies, allied industries and organisations, academics, and others. As an effective communicator and decision maker, you will need to be able to present your interpretation and findings on a range of issues, as will occur in the negotiation and management of projects, the submission of tenders, and the advising of clients. The topic for your research in this subject aims to provide you will strategies to both write and talk about your interpretation and findings about diverse issues. Your writing and your presentations will be an attempt to convince a nonspecialist audience of your point of view. You may choose one of the following areas of research for your project. Topic A – the impact of engineering projects on local communities The projects you may work on as an engineer could have significant social, cultural, economic, and/or political implications for people and communities who are not directly involved in the implementation of the project. Your research task is to: Discuss an engineering project which has, or has had, a significant impact/s on local communities Your research is to examine the impacts and outcomes of a specific engineering project on a community or communities. Examples of engineering projects could be dams or hydro-electric projects, weapons testing, mining, the building and operation of chemical or other industrial plants, building roads and railways, and others. The size of the project is unimportant, rather it is its impact on the local community which will be the focus of your research. The impacts could be one of the following scenarios, or a combination of scenarios: ? Well recognised and integrated into the planning of the engineering project, yet have provided, or are providing, difficulties in the implementation and outcomes of the project ? Recognised by the local communities or interest groups, but rejected or ignored by project planners and workers ? Unrealised in past projects, with the long-term consequences now the subject of community and/or legal dispute. 354 Your discussion needs to be an examination, that is, an analysis of the impacts arising from the project. Avoid lengthy descriptions of the history of the project, the engineering technicalities, or merely describing the impacts. You need to read as widely as possible about the project you have chosen, and from your interpretation of the source information provide a discussion of the (perhaps disputed) impact/s of the project. Limit your scope so that you have a specialised focus, that is, analyse only two or three impacts of the project. The word limit set for your assignments means you will not be able to cover all aspects of the project. Your focus needs to be an in-depth examination rather than a broad sweep of issues. Topic B – the impact of seemingly simple technology on the existence of communities. This topic also aims to examine the impact of (seemingly simple) technology on the existence and quality of life for those who use or used the technology. Your task is to: Discuss the impact of a seemingly simple technology on the existence of a community This research topic involves examining the design logic underpinning the technology and importantly the effectiveness of its use. Examples of apparently simple technology could be the boomerang, other hunting implements, for example, harpoons and poison arrows, a specific type of irrigation system, terracing for the cultivation of crops, and others. Your research needs to take account of: ? The design logic underpinning the technology ? The quality of life and survival provided for those who used the technology ? Any evidence which debates the effectiveness of technology, particularly its long term use. The technology you are examining may have been beneficial for a community in the short term, but in the longer term, further developments, modifications, abandonment of the technology, may have ensured a better quality of life, even survival, of a community. Long term environmental impacts could be important in your study. Your discussion needs to be an analysis of the effectiveness, or otherwise, of the technology. Avoid lengthy descriptions of the history or the form of the technology. This information needs to be only brief background information. You need to read as widely as possible about the technology you have chosen, and from your interpretation of the source information provide a discussion of the (perhaps disputed) effects of its use. Limit your scope so that you have a specialised focus, that is, on the analysis of two or three aspects of effectiveness of the technology. The technology could be from any era, past or even present day. If you are examining past technology, your focus needs to be on the effectiveness, or otherwise, of the technology itself for its intended purpose regardless of other influencing factors such as the introduction of other technology as a result of invasion, colonisation, or economic factors. Alternatively, the technology could be in current use or development, such as reversions to more environmentally sustainable technologies, for example, wind power. (Wake, 2002) CONCLUSION By promoting a shared agenda between language and engineering disciplines it is suggested that this may also promote student recognition of the importance of communication in engineering. Regardless of the similarities and differences of engineering communication education taken by various programs discussed here, increased levels of communicative competence relate directly to employability and success in the engineering industry. The program developed by School of Mechanical Engineering at the University of Adelaide represents a successful integrative Engineering Communication curriculum, developed for both local and international Engineering students in an Australian university, which aims to develop communicative ability, community engagement and an awareness of the social, cultural, political, international, environmental and ethical contexts in which professional engineers practice. 55 ACKNOWLEDEMENTS Thanks go to many colleagues and friends, and to staff and students of the School of Mechanical Engineering who provided input (often unwittingly) to this research proposal. Thank you to Karen Adams for the stimulating and frequent discussions on many things educational and philosophical and Colin Kestell engineering lecturer extraordinaire who can always be relied on to stimulate teaching enthusiasm and creativity. Many thanks go to wonderful colleagues Elizabeth Yong and Kristin Munday whose considerable work is also represented here, and to Catherine Irving and Patricia Zoltan whose support, intellectual contributions and hard work have also contributed to this program. Thank you also to Barbara Wake whose commitment to and knowledge of academic communication which, together with the vision of Colin Hansen, Head of the School of Mechanical Engineering have enabled the development of such a successful program of professional and academic engineering communication. Special thanks to Roxanne Missingham for the editing and encouragement. REFERENCE Adams, K & D Missingham (2006) Contributions to Student Learning: An overview of Engineering Communication courses in Mechanical Engineering education, School of Mechanical Engineering, University of Adelaide, unpublished (internal) report. Alvesson, M (2004) Knowledge Work and Knowledge-intensive Firms, Oxford University Press, Oxford. Artemeva, Natasha, Logie, Susan & St-Martin, Jennie (1999) ? From Page to Stage: How Theories of Genre and Situated Learning Help Introduce Engineering Students to Discipline-Specific Communication? Technical Communication Quarterly, Summer, vol. 8, no. 3, pp. 301-316. Bruner, J (1960) The Process of Education, Harvard University Press, Cambridge, Mass. Department of Employment, Education, Training and Youth Affairs (2000) Employer satisfaction with graduate skills: research report, by AC Nielsen, DEETYA, Canberra. Einstein, H Herbert 2002, ? Engineering Change at MITâ⠂¬Ëœ, Civil Engineering, October, vol. 72, i. 10, pp. 62-69. European Conference on Sustainable Cities & Towns, Aalborg, Denmark, 1994, Charter of European Cities and Towns Towards Sustainability, p. http://ec. europa. eu/environment/urban/pdf/aalborg_charter. pdf> viewed 21 July, 2006 Institution of Engineers Australia (1999) National Generic Competence Standards, IEAust, Canberra. Jennings, Alan & Ferguson JD (1995) ? Focussing on Communication Skills in Engineering Education‘, Studies in Higher Education, vol. 20, no. 3, pp. 305-314. Lee, Tong Fui (2003) ? Identifying essential learning skills in students‘ Engineering education‘, paper presented at the Annual HERDSA Conference, 6-9 July, Christchurch, New Zealand. Najar, Robyn L (2001) ? Facilitating the development of disciplinary knowledge and communication skills: Integrating Curriculum‘, paper presented at the Annual Meeting of the Australian Association for Research in Education, Freemantle, 2-6 December. Newell, James A, Marchese, Anthony J, Ramachandran, Ravi P, Sukumaran, Beena & Harvey, Roberta (1999) ? Multidisciplinary Design and Communication‘, International Journal of Engineering Education, vol. 15, no. 5, pp. 1-7. Office of Sustainability, Department of Environment and Heritage, Government of South Australia, (2006) What is sustainability? viewed 21 July, 2006 356 Riemer, Marc J (2002) ? English and Communication Skills for the Global Engineer‘, Global Journal of Engineering Education, vol. 6, no. 1. Shwom, Barbara & Hirsch, Penny (1999) ? Re-envisioning the writing requirement: an interdisciplinary approach‘, Business Communication Quarterly, March, vol. 62, i. 1, pp. 104-108. Vygotsky, L S (1978) Mind in Society, MIT Press, Cam bridge, Mass. Wake, B (2002) Engineering Communication Course Notes, School of Mechanical Engineering, The University of Adelaide, Adelaide. Wood, D, Bruner, J, & Rose, S (1975) ? The Role of Tutoring in Problem Solving‘, Journal of Child Psychology and Psychiatry, vol. 17, pp. 89-100. Yong, E & Missingham, (2006) Design & Communication Course Notes, School of Mechanical Engineering, The University of Adelaide, Adelaide. Yong, E & Missingham, (2005) Design & Communication Course Notes, School of Mechanical Engineering, The University of Adelaide, Adelaide. Yong, E & Missingham, (2004) Design & Communication Course Notes, School of Mechanical Engineering, The University of Adelaide, Adelaide. 357

Sunday, January 5, 2020

A democratic political system is an essential condition for sustained economic progress. Discuss Free Essay Example, 2500 words

The renowned international affairs expert, Francis Fukuyama argued in his book, The End of History and the Last Man, that the fall of communism and the rise of liberal democracy have marked the End of History as far as the triumph of a particular ideology is concerned (Fukuyama, 1991). This has been echoed by other writers who have expressed sentiments in favor of capitalism and democracy being concomitant to each other in their complementarities. SUSTAINABLE DEVELOPMENT The common notion of development with the measure of GDP (Gross Domestic Product) as a yardstick of progress is sometimes misleading. Since the ratio between the rich and the poor and the wealth gap have to be considered as well, GDP fails to accurately convey the well being of the people of the country. A better measure of overall well being of a country is the Human Development Index or HDI that takes a broad view of the overall economic and social well being of the citizens of a country. There has been a consensus view emerging within the economic community that all round economic development can only be achieved if there are a measure of democratic norms in place within societies that are unable to grow beyond a certain point due to lack of opportunities and stifling political systems. We will write a custom essay sample on A democratic political system is an essential condition for sustained economic progress. Discuss or any topic specifically for you Only $17.96 $11.86/pageorder now As the paper has pointed out previously, economists like Jean Dreze have maintained that unless a country improves on the measures like providing education, clean and safe drinking water and sanitation and other forms of social infrastructure, the possibility of further economic growth may be stunted due to lack of a pool of educated workforce and quality â€Å"human capital†. The last statement is crucial as the LDC’s may lose out on growth trajectory and their growth rates may taper off unless they provide for the needed parameters in the human development indices. The HDI statistics tell an important story. There have been instances of countries in East Asia that have progressed significantly since the 1970’s and have managed to obtain a measure of progress in this front. However, the countries of Sub-Saharan Africa have stagnated to a large extent in this regard. And Brazil is one of those countries that are midway through the process of adjusting itself to the human element of development. China, on the other hand has made progress on the GDP as well as the HDI front making it a true powerhouse to reckon with. Economists like Amartya Sen have pointed to the social indices as a measure of building up human capital that is so vital to the establishment of norms of market behavior.